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Abstract Unsupervised domain adaptation (UDA) has achieved great success in handling cross-domain machine learning

applications. It typically benefits the model training of unlabeled target domain by leveraging knowledge from labeled

source domain. For this purpose, the minimization of the marginal distribution divergence and conditional distribution

divergence between the source and the target domain is widely adopted in existing work. Nevertheless, for the sake of privacy

preservation, the source domain is usually not provided with training data but trained predictor (e.g., classifier). This incurs

the above studies infeasible because the marginal and conditional distributions of the source domain are incalculable. To this

end, this article proposes a source-free UDA which jointly models domain adaptation and sample transport learning, namely

Sample Transport Domain Adaptation (STDA). Specifically, STDA constructs the pseudo source domain according to the

aggregated decision boundaries of multiple source classifiers made on the target domain. Then, it refines the pseudo source

domain by augmenting it through transporting those target samples with high confidence, and consequently generates labels

for the target domain. We train the STDA model by performing domain adaptation with sample transport between the

above steps in alternating manner, and eventually achieve knowledge adaptation to the target domain and attain confident

labels for it. Finally, evaluation results have validated effectiveness and superiority of the proposed method.

Keywords unsupervised domain adaptation, domain shift, sample transport, pseudo source domain

1 Introduction

In machine learning, the models are typically gene-

rated on the training data and then deployed on the

test data under the hypothesis that the data was sam-

pled from the same statistical distribution, i.e., inde-

pendent and identical distribution (i.i.d.). However, in

many real-world application scenarios, the data used for

model training and performance test does not comply

with the i.i.d. hypothesis such that the trained model

degenerates on the test data. In other words, there

exists the divergence between the distributions of the

training and the test data, which is distinguished as do-

main shift [1–3]. To address such distribution shift, the

paradigm of unsupervised domain adaptation (UDA)

has been introduced, where the data distributions are

treated as different domains [4, 5]. In UDA, the do-

main with supervision information (e.g., with labeled

data) is distinguished as the source domain but those

without supervision knowledge (e.g., with unlabeled

data) as the target domain. UDA is aimed to mit-

igate the domain divergence and leverage knowledge

from the source domain to facilitate training the tar-

get model [6–8]. One direct way to achieve this goal
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is minimizing the cross-domain conditional distribution

inconsistency [9, 10]. Along this line, Pan et al. [11] pro-

posed the Transfer Component Analysis (TCA) model

by transforming both the source and the target domain

in dimension-higher Hilbert space, and then performing

cross-domain component analysis. Afterwards, Wang

et al. [12] proposed the BDA method by eliminating the

domain shift and tackling the class imbalance.

In some applications, e.g., medical diagnosis [13], the

data itself of the source domain is not available be-

cause of privacy preservation. In this case, the manner

of aligning the domain data distributions is no longer

feasible [14–16]. Although the generated source domain

models (e.g., the model architectures and parameters)

are usually permitted to access, they could not be di-

rectly applied to the target domain because of the afore-

mentioned domain shift. To address the problem that

the source domain data is unavailable (i.e., the source-

free problem), an alternative way is to approximate the

source domain from the provided target domain [17, 18].

However, two critical issues arise: which target domain

data to choose for the source domain approximation,

and what strategies to guarantee the approximation

confidence.

To address the first issue of approximating the

source domain, one often-used strategy is to recover

the source domain by predicting the target domain data

with the accessible source domain model, and choosing

these predicted target domain data far away from the

decision boundary as pseudo source points [19, 20]. To

handle the second issue of characterizing the approxi-

mation confidence, the distances of the candidate data

points to the decision boundaries have been adopted to

measure the approximation confidence [21–23]. Despite

both the two issues have been considered in aforemen-

tioned methods, the divergence of cross-domain condi-

tional distributions has not been modeled. In addition,

they still suffer from the following drawbacks. Firstly,

the conditional distributions of their source domains

are not consistent with each other such that the desired

confident target data is difficult to generate. Secondly,

it is difficult to reach consistent confidence decisions be-

tween the classifiers of the source domains because of

their distribution shift.

To eliminate the drawbacks aforementioned, we pro-

pose a novel kind of source-free UDA by taking into ac-

count both domain adaptation and sample transport,

namely Source Transport Domain Adaptation (STDA).

In STDA, one pseudo source domain is firstly con-

structed according to the aggregated decision bound-

aries of multiple source classifiers on the target domain.

Then, the pseudo source domain is refined by augment-

ing it through transporting these high-confidence tar-

get samples, and in this process the labels of the tar-

get domain data are assigned as well. Finally, domain

adaptation is achieved with sample transport learning

by conducting them in an alternating manner. In sum-

mary, the main contributions of this work are four-fold

as follows.

1) A source-free UDA method is proposed, coined as

Source Transport Domain Adaptation (STDA), which

combines domain adaptation and sample transport in

the learning process without accessing the source do-

main data.

2) In STDA, the pseudo source domain is con-

structed to approximate the source domain according

to the boundaries of multiple source domain classifiers

on the target domain data.

3) The pseudo source domain is refined through

sample transport learning by augmenting it with these

confident target domain samples, and in turn assigning

labels to these confident target samples in alternating

manner.

4) Experimental evaluations are conducted to vali-

date the effectiveness and performance superiority of

the proposed method.

The rest of this article is organized as follows. Sec-

tion 2 introduces preliminary knowledge related to this

work. Section 3 elaborates the proposed model and the

algorithm. Section 4 reports experimental results and

analyzes them. Finally, Section 5 concludes this work

and gives future research directions.

2 Preliminaries

2.1 Source-Free UDA

In the past few years, while a variety of UDA

methods [5, 24] have been proposed, most of them per-

form domain adaptation from the perspective of dis-

tribution alignment between the domains. To estimate

the domain distributions, these methods usually require

to access the source domain data. Nevertheless, in

some real-world application scenarios, the source do-

main data is not available because of various reasons

like privacy protection. This UDA scenario is distin-

guished as source-free UDA [25, 26]. In this case, most of

the aforementioned UDA methods cannot work without

accessing the source domain data. To address this chal-

lenge, model adaptation has been introduced to tackle

the source-free UDA [27, 28]. Although these methods
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can achieve UDA, they are significantly different from

our proposed STDA method (to be elaborated in Sec-

tion 3). Specifically, in our STDA method, one target

domain associated with multiple trained classifiers is

involved, and the decision consistence of these classi-

fiers is aggregated through designing the sample trans-

port rule to guide the choice of the confident target

samples for pseudo source domain approximation. In

contrast, the aforementioned studies [27, 28] approximate

the pseudo source domain merely by either one classifier

or an adversarial discriminator.

2.2 Domain Distribution Alignment Criteria

In UDA, one of the widely adopted domain align-

ment measures is the maximum mean discrepancy

(MMD) [29–31]. The MMD criterion is mainly dedicated

to measure the distribution discrepancy between the

domains. Although MMD has been widely incorpo-

rated in UDA, it merely measures the marginal distri-

butions of the domains, and cannot characterize the

conditional distributions. To handle this issue, the

conditional maximum mean discrepancy (CMMD) has

been modeled in UDA [2, 32]. As aforementioned, both

the MMD and the CMMD criteria require accessing

the source and the target domain data for estimating

the domain distributions. As a result, both the MMD

and the CMMD criteria are infeasible in the scenario of

source-free UDA.

2.3 Selection and Labeling of Confident Target

Instances

In source-free UDA, one way of recovering the source

domain is approximating it with the confident target

domain samples [33, 34]. For this purpose, the label con-

fidence model was proposed by labeling the target in-

stances with soft confidence, and then applying them as

the source domain surrogate to measure cross-domain

distribution divergence [33]. Another representative way

is the selection bias mechanism [34]. Specifically, it mea-

sures the domain divergence by estimating the bias of

the selected target instances. Recently, active learning

(AL) [35, 36] has also been employed in domain adap-

tation by labeling the target instances by the Oracle.

Although the AL technique can effectively supervise

the domain adaptation by labeling informative data

instances, it was usually adopted in semi-supervised

rather than unsupervised domain adaptation.

3 Proposed Method

In this section we propose an unsupervised source-

free domain adaptation method, called Source Trans-

port Domain Adaptation (STDA), which performs in-

ductive domain knowledge transfer from the provided

source classifier rather than the source training data.

3.1 Problem Setting

In unsupervised domain adaptation, the source do-

main is represented as Ds = {Xs,Ys} = {(xs
i ,y

s
i )}Mi=1

while the target domain is represented as Dt = {Xt} ={
xt
j

}N
j=1

, where Xs and Xt are the input space and

Ys = {1, 2, · · ·, C} is the label space with M (N) and C

being the number of the corresponding domain samples

and classes, respectively. In addition, let p(Xs) and

q(Xt) denote the marginal distributions of the source

and the target domains, respectively. In the setting

of source-free UDA, p(Xs) 6= q(Xt). It should be

noted that p(Xs) cannot be directly estimated since

the source domain data is unavailable. Instead, we are

given K trained source domain classifiers, characterized

by {θk}Kk=1.

3.2 Source-Free Domain Adaptation

Domain adaptation aims to leverage source domain

knowledge to benefit the training of the target domain

tasks. However, since the source and the target do-

mains typically do not comply with the same i.i.d. dis-

tributions, domain alignment is usually required to al-

leviate their distribution divergence. One of the widely-

used strategies is to align the domains by minimizing

their maximum mean discrepancy (MMD):

MMD2 (Ds,Dt)

=

∥∥∥∥∥∥ 1

M

M∑
i=1

φ (xs
i )−

1

N

N∑
j=1

φ
(
xt
j

)∥∥∥∥∥∥
2

H

, (1)

where φ(·) denotes the feature mapping (e.g., the Gaus-

sian kernel function) in the RKHS space H. Unfortu-

nately, when the source domain data is not available

or not accessible (i.e., source-free), (1) cannot be esti-

mated directly. To address this challenge, we assume

that all the target domain instances are pretended as

the source domain whose labels are assigned by the

source domain classifiers {θk}Kk=1. In this setting, each

of the target domain instances will be predicted by the

K source classifiers (taking the i-th instance xt
i as ex-

ample): {θ1(xt
i), θ2(xt

i), · · ·, θK(xt
i)}. According to the
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decision confidence of the target domain instances by

the source domain classifiers, we can approximate the

source domain with its pseudo pDs. Then, (1) can be

reformulated as

MMD2 (pDs,Dt)

=

∥∥∥∥∥∥ 1

M

M∑
i=1

φ (xps
i )− 1

N

N∑
j=1

φ
(
xt
j

)∥∥∥∥∥∥
2

H

. (2)

It is obvious that there is no distribution discrepancy

in (2) if the target domain completely equals the source

domain. Moreover, without consideration of the in-

stance labels, the distribution of the built pseudo source

domain is always the same as that of the target domain,

which makes (2) meaningless in addressing the source-

free UDA. However, when the conditional distribution

is considered, MMD will be extended to the conditional

MMD (CMMD), shown as follows:

CMMD2 (Ds,Dt)

=

C∑
c=1

∥∥∥∥∥∥ 1

Mc

Mc∑
i=1

φ (xsc
i )− 1

Nc

Nc∑
j=1

φ
(
xtc
j

)∥∥∥∥∥∥
2

H

, (3)

where Mc and Nc represent the number of source in-

stances and target instances in the c-th class, respec-

tively. xsc
i and xtc

j denote the i-th and the j-th in-

stances from the c-th class in the source and the target

domains, respectively. In fact, if we calculate the class

centers of the source domain by (3), there will be tiny

errors due to the uncertainty of the source sample la-

bels. If all the samples have the only one-hot label, (3)

is a true representation. By contrast, when the samples

are encoded with soft labels, the center of source class

c will be represented as follows:

center(c) =
1

M

M∑
i=1

θc(φ (xs
i ))φ (xs

i ) , (4)

where θc(φ (xs
i )) means the probability of the sample

belonging to the corresponding class. In (4), the center

of each class is modified by each sample. In soft labels,

all the samples will affect each class center. As a result,

the source domain class center will change after the

source domain data updating, leading to new distribu-

tion divergence between the domains. To address this

issue, we assume all the classifiers apply the soft labels

or the class probability θi(x) ∈ RC , and then the class

probability will become the decision criterion. With the

class probability, we can reconstruct the pseudo source

domain pDs = {xt
i, θmax(xt

i)}Ni=1, where θmax(x) indi-

cates the confidence-highest classifier. Through com-

bining the pseudo source domain with (3), we have the

following equation:

CMMD2 (pDs,Dt)

=

C∑
c=1

∥∥∥∥∥∥ 1

N

N∑
i=1

θcmax(xps
i )φ (xps

i )− 1

Nc

Nc∑
j=1

φ
(
xtc
j

)∥∥∥∥∥∥
2

H

,

(5)

where the labels of the target instances xtc
j are assigned

by the confidence-highest classifier. θcmax(xps
i ) indicates

the probability of the i-th sample belonging to the c

class on the most reliable classifiers on the source do-

main. It is worth noting that the labels on target sam-

ples are the one-hot labels while the labels on pseudo

source samples are soft labels. By further taking ad-

vantages of matrix tricks and regularization, (5) can be

extended as follows:

minA tr
(
ATX

∑C
c=1 McX

TA
)

+ λ‖A‖2F
s.t. ATXHXTA = I,

(6)

where

(Mc)ij =



θcmax(xps
i )

N2
, if xi,xj ∈ pDs,

1

N2
c

, if xi,xj ∈ D(c)
t ,

−θ
c
max(xps

i )

NNc
, if

{
xi ∈ pDs,xj ∈ D(c)

t ,

xi ∈ D(c)
t ,xj ∈ pDs,

0, otherwise.

(7)

A denotes the transformation matrix, and I is the 2N -

order identity matrix. In addition, H = I − 1
2N 1 is

the centering matrix with 1 being an all-one matrix.

By minimizing (6) with (7), we could achieve a proper

pseudo source domain, which can better approximate

the marginal distribution of the source domain.

3.3 Sample Selection and Transport

In regular unsupervised domain adaptation, the la-

beled data is only available in the source domain. And

in Subsection 3.2, a method adjusting the target do-

main has been proposed. Moreover, the regular selec-

tion strategy is to find the instance which has the same

label in different classifiers. However, there is no ev-

idence that the target domain after tuning-up is the

closest domain to the unavailable source domain and

the label is correct enough. To this end, a strategy

to measure the accuracy of sample classification is pro-

posed. In sample selection, we set up a sample trans-

port rule with the help of sample transport learning.
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When designing the rule, we want to implement the

following two functions: firstly, the label probability on

each classifier should be accurate enough; secondly, the

classification gap of each classifier should be as small as

possible. Based on these considerations, we design the

following sample transport rule:

ST (x) =
1

K

∑K
k=1 max(θk(x))

1
2

∑K
i,j=1 ||θi(x)− θj(x)||22

. (8)

From (8), we can find that the above two consider-

ations are both addressed by measuring ST (x). Gene-

rally, a proper threshold setting will help achieve a bet-

ter result.

3.4 Sample Transport Domain Adaptation

By taking into account the above considerations (in

Subsections 3.2 and 3.3), the proposed STDA can be

naturally constructed, with two learning steps as fol-

lows.

1) Based on (6), we have a quantitative method

to measure the matching degree between the target

domain and the source domain classifiers. Then the

Lagrange multiplier method will be used to solve (6),

which is shown as follows:(
X

C∑
c=1

McX
T + λI

)
A = XHXTAΦ, (9)

where Φ is the Lagrange multiplier. Then the transfor-

mation matrix A can be obtained as the eigenvectors

corresponding to the smallest d eigenvalues of (9).

2) After obtaining the transformation matrix A,

all the target domain instances will be transformed

as {Axt
i}Ni=1. At this point, all target instances are

subject to supervision by sample transport rule. If

ST (Axt
i) > b where b is the transport threshold, the

instance Axt
i will be treated as a confident sample of

which the label will be replaced by one-hot label instead

of soft label and not to be updated anymore. Then the

sample xps
i will be replaced by Axt

i. This step will be

iterated until all the samples have been tested by the

transport rule.

In summary, the complete process of the STDA al-

gorithm is elaborated in Algorithm 1, where xt
i, iter

means the instance in the iter-th iteration and xt
i,0 is

the initialization. We can see that the STDA algorithm

is an inductive algorithm, since it can generalize to un-

seen test data with the output transformation matrix

A. In addition, for the sake of better understanding,

the algorithm process is also demonstrated in Fig.1.

Algorithm 1. Algorithm for STDA

Input : {xt
i,0}Ni=1: training data for the target domain;

{θi}Ki=1: different classifiers on the source

domain;

b: the threshold in the sample transport rule;

itermax: the maximum number of iterations

Output: the transformation matrix A;

1 Initialize the pseudo source domain by classifiers

pDs = {xps
i ,yps

i }Ni=1 = {xt
i,0, θmax(xt

i,0)}Ni=1 where the

pseudo source soft label yps
i = {θmax(xt

i,0)}Ni=1; and the

iteration iter = 0;

2 while iter < itermax do
3 Update the transformation A by (9);

4 Update {xt
i,iter+1}Ni=1 = {Axt

i,iter}Ni=1;

5 foreach target sample xt
i,iter+1 do

6 if yps
i is a soft label and ST (xt

i,iter+1) > b by

(8) then
7 pDs = pDs\xps

i ;

8 pDs = pDs ∪ xt
i,iter+1;

9 Assign yps
i with one-hot label whose entity

with maximal probability is 1;
10 end

11 end

12 iter = iter + 1.

13 end

It is worth noting that with the manner in (5)

trained via Algorithm 1, the source and the target do-

main can be aligned closer to each other through min-

imizing the divergence between the generated pseudo

source domain and the target domain. More impor-

tantly, their conditional divergence can be effectively

measured as well. The explanations are as follows. For

the target domain, all its samples are transformed by A

in each iteration of Algorithm 1. By comparison, for the

source domain only these pseudo source samples that

pass through the transport rule in current iteration will

be updated by A. In addition, the generated pseudo

source samples are encoded with soft labels while the

target samples are with one-hot labels. As a result, the

approximated source domain is substantially not iden-

tical to the target domain, which makes (5) reasonable.

4 Experiments

In this section, we conduct experiments to evaluate

the effectiveness of the proposed STDA method.

4.1 Datasets

The experiments are conducted on the Office-

10+Caltech-10 dataset. For Office-10+Caltech-10, it

has been widely used in DA. The Office-31 and Caltech-
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Fig.1. Work-flow of the STDA algorithm. (a) The source domain is initialled with pseudo samples and unstable, and (b) with increased
iterations of sample transport learning, some of the unstable samples are transformed into stable ones, and (c) the domain adaptation
is executed between the updated pseudo source domain and the target domain until the above two steps converge.

256 formed by the same 10 classes are extracted from

Office-31 and Caltech-256, respectively. It is generally

believed that the Office-10 dataset contains four do-

mains: Amazon (A), Webcam (W) and DSLR (D)

from Office-10, and Caltech (C) from Caltech-10. Be-

sides, additional experiments on the digit handwritten

datasets, i.e. the USPS (U) dataset and the MNIST

(M) dataset are also performed. The USPS and MNIST

datasets are standard digital recognition datasets con-

taining handwriting digits from 0 to 9. The details of

each dataset are shown in Table 1.

4.2 Comparison Methods and Setup

4.2.1 Comparison Methods

Some methods are introduced to compare with

STDA.

• 1-NN. 1-NN is a basic classification algorithm,

that is, given a training dataset, for a new input in-

stance, we find the instance closest to the instance in

the training dataset. This instance belongs to a certain

class, and then the input instance will be classified into

this class.

• SVM. SVM is also a basic classification algorithm

which is to solve the separation hyperplane which can

divide the training data correctly.

• Geodesic Flow Kernel (GFK) [37]. GFK is a do-

main adaptation method which constructs a geodesic

to make the source domain close to the target domain

in Grassmann manifold.

• Transfer Component Analysis (TCA) [11]. TCA

tries to find a mapping, which can project both the

source domain and the target domain into a high lat-

itude Hilbert space, and then calculates the mean dis-

tance between the two stacks of data after projection.

• Joint Distribution Adaptation (JDA) [38]. JDA is

an evolution of TCA which combines TCA and condi-

tional distribution and reduces the distribution diffe-

rence between domains.

• Balance Distribution Adaptation (BDA) [12]. BDA

leverages the importance of the marginal and condi-

tional distribution discrepancies and balances different

domains.

• Easy Transfer Learning (EasyTL) [39]. EasyTL

is the easy method which requires no model selection

and hyperparameter tuning, while achieving competi-

tive performance.

4.2.2 Experimental Setup

In the experiments, the domains are represented

with SURF features. Initialization of the target pseudo

labels is achieved with the maximum classification

probabilities of the classifiers, and then updated by

previous round results. In addition, we adopt SVM,

the Bayes classifier and the neural network classifier as

Table 1. Details of Experimental Datasets

Dataset Type Number of Classes Feature Dimension Number of Samples Domain

Office-10 Object 10 800 1 410 A, W, D

Caltech-10 Object 10 800 1 123 C

USPS Digit 10 256 1 800 U

MNIST Digit 10 256 2 000 W
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three classifiers, and encode their output probabilities

as soft labels. When reaching the maximum iteration,

instances failing to pass through the transport rule will

achieve the most reliable label on all classifiers. For

feasible comparison, the data class centers of the source

domain are provided for the compared methods (except

for our method), and the parameters in each compared

method are assigned according to the settings of corre-

sponding reference. For our STDA method, both the

threshold b and the parameter λ are set to 1 by prior

knowledge. All the reported results are averaged over

10 random runs 1○.

4.3 Results and Analysis

4.3.1 Results on Office-10 + Caltech-10

We test the performance of our method STDA and

the other methods on Office-10 + Caltech-10. The re-

sults are reported in Table 2. In Table 2, we have the

following findings.

• In 10 of the 12 cases, STDA achieves the best re-

sults. Specially, in W → D and D → W tasks, where

“→” means the knowledge transfer from the source do-

main to the target domain, STDA gets accuracy 95.83%

and 94.24% which is much higher than those of other

methods due to the fact that the Webcam dataset and

the Dslr dataset have the similar feature maps, and the

classifiers of one dataset will perform well on the others.

• Compared with the single-classifier method,

STDA performs the best. This is because sample trans-

port will screen the reliable samples and change the dis-

tribution of pseudo source domain. It has been proved

that the prediction considering the structural risk is

better than the single prediction.

• Compared with the other domain adaptation

methods, due to the lack of constraints on other clas-

sification boundaries, these methods, i.e., TCA, JDA,

BDA and EasyTL, do not perform well. This implies

that multiple independent decisions will improve the

classification results.

Also, other results on handwritten datasets are

shown in Fig.2. The results show that our method

has no significant advantages, which may result from

the fact that the similarity of classification boundaries

leads to the same classification results.

4.3.2 Analysis on Convergence and Accuracy

Compared with the other performance measures,

the convergence efficiency is an importance index due to

the intuitive representation of run time. The accuracy

with iterations of different methods is shown in Fig.3.

It is noting that EasyTL has no iterations, which has

the same property with TCA, so we only show the itera-

tion of TCA without EasyTL. We observe the following

findings.

• From the convergence, STDA converges gradually

to a certain extent. The evidence is that the accuracy

remains virtually unchanged after several iterations.

• The accuracy of TCA remains unchanged with it-

erations, since it is solved in one iteration with closed-

form solution. In addition, the accuracies of JDA

and BDA ascend in the first iteration but then dither

severely with iterations. It is because their solution

paths are not stable in the optimization process. By

contrast, with increased iterations, the accuracy of

STDA steadily ascends. It validates the effectiveness

and superiority of this algorithm in gradually augment-

ing the source domain using the confident target data

through sample transport.

Table 2. Estimation Accuracy (%) of STDA and Other Methods on Office-10 + Caltech-10 Dataset

Method C → A C → W C → D A → C A → W A → D W → C W → A W → D D → C D → A D → W

1-NN 23.70 25.76 25.48 26.00 29.83 25.48 19.86 22.96 59.24 26.27 28.50 63.39

SVM 36.95 32.54 38.22 34.73 35.59 27.39 26.36 31.00 70.07 29.65 32.05 75.93

GFK 39.53 39.42 34.64 37.80 36.21 34.57 23.68 26.94 77.36 28.47 30.44 74.23

TCA 40.35 33.79 43.11 38.53 36.46 30.04 23.29 28.73 81.46 30.08 29.60 82.57

JDA 42.41 35.24 40.54 35.27 32.66 38.58 21.57 29.64 83.02 30.56 31.83 75.80

BDA 42.43 35.21 43.25 37.57 35.03 39.80 24.63 30.64 83.02 30.50 31.25 76.32

EasyTL 43.64 36.51 43.59 38.06 35.86 39.80 22.64 31.95 83.02 31.45 30.46 80.31

STDA 48.83 39.53 46.26 41.53 41.39 44.87 29.75 30.72 95.83 37.21 30.52 94.24

Note: Best results are in bold.

1○The source codes of STDA and the compared methods can be found at https://github.com/mc-boo/sample-transport-domain-
adaptation and https://github.com/jindongwang/transferlearning respectively.
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Fig.3. Accuracy comparison with increased iterations on A →
D.

• From the perspective of change rate, STDA has

a smaller rate in higher iteration. This is intuitive and

can be explained. The sample transport rule will iden-

tify samples in each round, and the remaining samples

are more and more difficult to identify after many it-

erations, which leads to the gradual decrease of correct

samples in each round, and finally leads to no increase

in the accuracy rate.

4.3.3 Analysis on Different Classifiers

In this subsection, comparison experiments are per-

formed to confirm the accuracy of the proposed method.

As have mentioned in previous experiments, three clas-

sifiers are used to achieve the best performance. This

subsection demonstrates the combination of classifiers.

The results are shown in Table 3, where we can find

that 1-NN achieves the worst result, and its hybrid al-

gorithm cannot achieve the best performance. When

considering the function of soft label, we can infer that

the hard label will not be suitable for our algorithm

and that is why we choose the soft label for the con-

fidence. Moreover, in some domain adaptation tasks,

the results of multiple classifiers are worse than those

of single classifier, maybe because too many classifier

boundaries confuse the classification subspace, which

leads to inaccurate class of samples. Therefore, it is

very important to select the appropriate classifier and

the classification boundary.

4.3.4 Ablation Study

In this subsection, an ablation study is performed to

evaluate the components of STDA. The ablation experi-

ment is conducted from two aspects: 1) without con-

ditional MMD (w/o CMMD) and 2) without sample

transport rule (w/o ST (x)). For the conditional MMD,

if we remove it from the STDA objective (i.e., the first

term in (6)), the eventual results will be determined by

the adopted three classifiers without domain alignment.

It means the STDA model degenerates to an ordinary

ensemble learning method. For the sample transport

rule (see (8)), if we remove it from the STDA algorithm

(see Algorithm 1), the labels of the target instances

will be determined by the classifier with the maximal

probability. The ablation experiment is preformed on

the Office-10+Caltech-10 dataset with results reported

in Table 4.

Table 3. Estimation Accuracy (%) of STDA with Different Classifiers

Method C → A C → W C → D A → C A → W A → D W → C W → A W → D D → C D → A D → W

1-NN 23.70 25.76 25.48 26.00 29.83 25.48 19.86 22.96 59.24 26.27 28.50 63.39
SVM 36.95 32.54 38.22 34.73 35.59 27.39 26.36 31.00 70.07 29.65 32.05 75.93
NN 37.32 34.62 36.91 35.10 37.55 26.48 25.75 31.96 71.38 30.00 31.52 78.94
Bayes 34.65 30.52 28.94 30.08 30.74 27.90 24.64 28.65 68.53 28.97 30.19 74.23
1-NN+SVM+NN 47.52 38.56 44.23 39.75 37.08 41.60 25.64 27.56 90.43 36.74 27.67 90.04
1-NN+NN+Bayes 46.23 37.69 43.60 38.62 36.64 40.61 29.67 29.75 89.58 36.87 26.85 89.50
1-NN+SVM+Bayes 47.59 37.51 45.23 39.65 35.99 39.06 27.50 26.42 90.12 35.77 28.34 91.43
SVM+NN+Bayes 48.83 39.53 46.26 41.53 41.39 44.87 29.75 30.72 95.83 37.21 30.52 94.24

Note: Best results are in bold.
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Table 4. Ablation Study on Office-10 + Caltech-10 Dataset

Method C → A C → W C → D A → C A → W A → D W → C W → A W → D D → C D → A D → W Mean

w/o CMMD 43.42 38.64 37.57 35.61 40.25 31.84 27.87 31.52 57.32 26.89 24.21 56.30 37.62

w/o ST (x) 42.73 34.14 43.28 37.24 39.32 36.39 25.74 24.65 70.35 34.26 27.45 73.25 40.73

STDA 48.83 39.53 46.26 41.53 41.39 44.87 29.75 30.72 95.83 37.21 30.52 94.24 48.39

Note: Best results are in bold.

We can observe the following findings. Without the

CMMD component, the STDA method (w/o CMMD)

achieves the lowest accuracy (37.62% mean accuracy).

Comparatively, when removing the transport rule, the

STDA method (w/o ST (x)) reaches better results

(40.73% mean accuracy). Interestingly, when both

the above components are incorporated in the STDA

algorithm, significant performance improvements are

yielded (48.39% mean accuracy). It means that both

the CMMD domain alignment and the sample trans-

port learning effectively bring about performance ben-

efits, which validates the rationality of our method.

4.3.5 Parameter Sensitivity of the Transport
Threshold

As demonstrated in Algorithm 1, the sample trans-

port rule is critical in approximating the source domain.

To evaluate it, we perform sensitivity experiment on

its hyperparameter b. Without loss of generality, we

demonstrate some results on the task C → A in Fig.4.
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Fig.4. Accuracy and convergence iterations of the STDA algo-
rithm with increased threshold b.

We can observe that with increased b, the number of

iterations required for algorithm convergence grows ex-

ponentially, while the accuracy stays nearly unchanged

when b > 1. The reason is that a larger b incurs much

fewer samples passing through the transport rule in

each iteration. That is the reason why we set b = 1

in the experimental setup.

5 Conclusions

This article proposed a novel kind of source-free un-

supervised domain adaptation method, named Sample

Transport Domain Adaptation (STDA), by modeling

domain adaptation with sample transport. The STDA

model works well without accessing the source domain

data, by which the source data privacy can be pre-

served. Specifically, STDA firstly estimates the pseudo

source domain and its pseudo labels. Secondly, it seeks

the most valuable instances for labeling through an ef-

fective selection strategy. Thirdly, it updates the cross-

domain distribution alignment between the updated

pseudo source and the target domain. After several

alternating rounds between above steps, consequently

reliable labels can be generated for the target domain.

Experimental evaluations demonstrate the effectiveness

and superiority of the proposed STDA method. How-

ever, the proposed model is shallow and may be not

able to completely explore those highly nonlinear know-

ledge from the domains. Therefore, in the future, we

will consider to extend the proposed model with deep

neural networks.
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